Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Antony J. Ward, ${ }^{\text {a }}$ Matija Burger, ${ }^{\text {a }}$ Cindy Aquino, ${ }^{\text {a }}$ Jack K. Clegg, ${ }^{\text {b }}$ Peter Turner, ${ }^{\text {b }}$ Anthony F. Masters ${ }^{\mathrm{a}}$ and Thomas Maschmeyer ${ }^{\text {a* }}$
${ }^{\text {a }}$ Laboratory for Advanced Catalysis for Sustainability, School of Chemistry, F11, The University of Sydney, NSW 2006, Australia, and ${ }^{\text {b }}$ Crystal Structure Analysis Facility, School of Chemistry, F11, The University of Sydney, NSW 2006, Australia

Correspondence e-mail:
th.maschmeyer@chem.usyd.edu.au

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.029$
$w R$ factor $=0.084$
Data-to-parameter ratio $=19.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(2,2', $\mathbf{2}^{\prime \prime}$-nitrilotriethanol)cobalt(II) bis(acetate)

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}$, contains two triethanolamine ligands bound to a Co^{2+} metal centre, which lies on a crystallographic inversion site such that the asymmetric unit contains half of the cation and one acetate anion. The triethanolamine ligands coordinate via each axial N and two of the three O atoms, while the third arm of the ligand is pendant with the hydroxyl group pointing away from the metal centre. The acetate anions are hydrogen bonded to the coordinated hydroxyl groups and also to the free arm, forming a two-dimensional sheet-like motif.

Comment

The synthesis of mesoporous siliceous materials involves the hydrolysis of an organosilicon source in the presence of a structure-directing template. In the synthesis of mesoporous silica, denoted TUD-1 (Jansen et al., 2001), the structuredirecting template is triethanolamine. Within our group there has been much effort dedicated to the incorporation of metals into the silica framework of such materials (Shan et al., 2001; Hamdy et al., 2005). One approach that has been targeted is the complexation of the metal precursors with the structuredirecting template prior to hydrolysis of the silicon source (Hamdy et al., 2006).

The title compound, (I), was isolated upon heating a solution of triethanolamine, cobalt(II) acetate tetrahydrate and 2propanol at 353 K . Removal of the solvent resulted in an orange oil, which deposited crystals of (I) upon standing. There have been numerous reports of triethanolamine as either a tridentate ligand (for Cu, Ni and Co) (Krabbes et al., 1999, 2000; Gao et al., 2004) or a tetradentate ligand for Mn (Andruh et al., 1993). The previously reported cobalt complex possesses an identical ligand arrangement as observed in this example with a single benzene-1,4-dioxyacetate dianion counter-ion (Gao et al., 2004).

The complex cation of (I) has a distorted octahedral geometry in which the coordinated atoms of one ligand are

Received 18 August 2006
Accepted 28 August 2006

Figure 1
The structure of (I), with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines. [Symmetry operation used to generate equivalent atoms: $-x,-y,-z$.]
trans to the corresponding atoms of the other ligand (Fig. 1 and Table 1).

The third arm of the triethanolamine ligand is oriented away from the cobalt. The acetate anions are positioned in the voids created by the uncoordinated arm of the triethanolamine. One of the acetate O atoms is strongly hydrogen bonded to the hydroxyl group $[\mathrm{H} \cdots \mathrm{O}=1.77$ (2) \AA] of the coordinated arms of the triethanolamine of one dication as well as to that $[1.89(2) \AA]$ of the pendant arm of another dication (Table 2), forming a two-dimensional array which propagates in the $b c$ plane (Fig. 2). This is a different hydrogen-bonding network to that of $\left[\mathrm{Co}\left(\left(\mathrm{HOCH}_{2}\right.\right.\right.$ $\left.\left.\left.\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right)_{2}\right]\left[\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{2}\right]$, in which all four diacetate O atoms are involved in weaker hydrogen bonding (1.93, 2.01 and $2.17 \AA$; Gao et al., 2004).

Experimental

Cobalt(II) acetate tetrahydrate $(0.5 \mathrm{~g}, 2.0 \mathrm{mmol})$ was added to a solution of triethanolamine (TEA) (10 ml) and 2-propanol (10 ml). The resulting suspension was heated at 353 K for 24 h to afford a deep orange solution. The solvent was removed in vacuo to afford an orange oil. Orange single crystals suitable for X-ray diffraction were obtained upon prolonged standing. MS (ESI ${ }^{+}$) ($\mathrm{m} / \mathrm{z}, \%$): 356 ($[M-$ $\left.\mathrm{H}]^{+}, 27\right), 267\left([\mathrm{Co}(\mathrm{TEA})(\mathrm{OAc})]^{+}, 3\right), 207\left([\mathrm{Co}(\mathrm{TEA})-\mathrm{H}]^{+}, 20\right)$. Analysis found: C 40.12, H 7.23, N 5.69%; calculated for $\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{CoN}_{2} \mathrm{O}_{10}$: C 40.42 , H $7.63, \mathrm{~N} 5.89 \%$.

Crystal data

$$
\begin{array}{ll}
{\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}} & Z=4 \\
M_{r}=475.4 & D_{x}=1.440 \mathrm{Mg} \mathrm{~m}^{-3} \\
\text { Orthorhombic, } \AA b c a & \text { Mo } K \alpha \text { radiation } \\
a=14.847(2) \AA & \mu=0.84 \mathrm{~mm}^{-1} \\
b=9.5480(11) \AA & T=150(2) \mathrm{K} \\
c=15.473(2) \AA & \text { Prism, orange } \\
V=2193.4(4) \AA^{3} & 0.54 \times 0.48 \times 0.19 \mathrm{~mm}
\end{array}
$$

Figure 2
A schematic representation of part of the two-dimensional hydrogenbonding network present in the title compound. Dashed lines indicate hydrogen bonds.

Data collection

Siemens SMART 1000 CCD
20387 measured reflections
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
$T_{\text {min }}=0.701, T_{\text {max }}=0.853$
2710 independent reflections
2314 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=28.3^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0425 P)^{2}\right. \\
& \quad+1.1747 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.67 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.084$
$S=1.04$
2710 reflections
141 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{C} 1-\mathrm{O} 2$	$2.0890(10)$	$\mathrm{Co} 1-\mathrm{N} 1$	$2.1557(12)$
$\mathrm{C} 1-\mathrm{O} 3$	$2.0906(11)$		
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 2^{\mathrm{i}}$	180	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 1$	$82.82(4)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 3^{\mathrm{i}}$	$89.67(4)$	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$97.18(4)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O}^{\mathrm{i}}$	$90.33(4)$	$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1$	$81.16(4)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 3$	180	$\mathrm{~N} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	180
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$98.84(4)$		

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 \cdots O4	$0.83(2)$	$1.77(2)$	$2.5952(16)$	$173.7(19)$
O2-H2 $\cdots 5^{\mathrm{i}}$	$0.85(2)$	$1.71(2)$	$2.5584(15)$	$176.9(19)$
O1-H1 \cdots O $^{\text {ii }}$	$0.84(2)$	$1.89(2)$	$2.7240(16)$	176

Symmetry codes: (i) $-x,-y,-z$; (ii) $x,-y-\frac{1}{2}, z+\frac{1}{2}$.

All H atoms bound to carbon were refined using a riding model with $\mathrm{C}-\mathrm{H}=0.98-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$. O-bound H atoms were located in a difference Fourier map and refined without bond length restraints, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997), WinGX32 (Farrugia, 1999), POV-RAY 3.5 (Cason, 2002) and WebLab ViewerPro 3.7 (Molecular Simulations, 2000); software used to prepare material for publication: enCIFer 1.0 (Allen et al., 2004).

We gratefully acknowledge the Australian Research Council for support.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Andruh, M., Hubner, K., Noltemeyer, M. \& Roesky, H. W. (1993). Z. Naturforsch. Teil B, 48, 591-597.
Cason, C. J. (2002). POV-RAY. Version 3.5. Hallam Oaks Pty Ltd, Williamstown, Victoria, Australia.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gao, S., Liu, J.-W., Huo, L.-H. \& Ng, S. W. (2004). Acta Cryst. E60, m462-m464
Hamdy, M. S., Mul, G., Wei, W., Anand, R., Hanefeld, U., Jansen, J. C. \& Moulijn, J. A. (2005). Catal. Today, 110, 264-271.
Hamdy, M. S., Ramanathan, A., Maschmeyer, T., Hanefeld, U. \& Jansen, J. C. (2006). Chem. Eur. J. 12, 1782-1789.

Jansen, J. C., Shan, Z., Marchese, L., Zhou, W., van der Puil, N. \& Maschmeyer, T. (2001). Chem. Commun. pp. 713-714.

Krabbes, I., Seichter, W., Breuning, T., Otschik, P. \& Gloe, K. (1999). Z. Anorg. Allg. Chem. 625, 1562-1565.
Krabbes, I., Seichter, W. \& Gloe, K. (2000). Acta Cryst. C56, e178.
Molecular Simulations (2000). WebLab ViewerPro 3.7. Accelrys Software Inc., San Diego, California, USA.
Shan, Z., Gianotti, E., Jansen, J. C., Peters, J. A., Marchese, L. \& Maschmeyer, T. (2001). Chem. Eur. J. 7, 1437-1443.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany. Siemens (1995). SMART (Version 5.054), SAINT (Version 6.45) and XPREP (Version 6.14). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

